The Cell Membrane
Phospholipids

- **Phosphate head**
 - hydrophilic
- **Fatty acid tails**
 - hydrophobic
- Arranged as a **bilayer**

Aaaah, one of those structure-function examples
Arranged as a Phospholipid bilayer

- Serves as a cellular barrier / border

- Polar hydrophilic heads
- Nonpolar hydrophobic tails

Impermeable to polar molecules

- Sugar
- H₂O
- Salt
- Waste
- Lipids
Cell membrane defines cell

- Cell membrane **separates** living cell from aqueous environment
 - thin barrier = 8nm thick
- Controls traffic in & out of the cell
 - allows some substances to cross more easily than others
 - hydrophobic (nonpolar) vs. hydrophilic (polar)
Permeability to polar molecules?

- **Membrane becomes semi-permeable via protein channels**
 - specific channels allow specific material across cell membrane
Cell membrane is more than lipids…

- Transmembrane proteins embedded in phospholipid bilayer
 - create semi-permeable channels
Why are proteins the perfect molecule to build structures in the cell membrane?
Classes of amino acids

What do these amino acids have in common?

<table>
<thead>
<tr>
<th>Nonpolar</th>
<th>Glycine (Gly)</th>
<th>Alanine (Ala)</th>
<th>Valine (Val)</th>
<th>Leucine (Leu)</th>
<th>Isoleucine (Ile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
</tr>
<tr>
<td></td>
<td>(\text{H})</td>
<td>(\text{H}_3\text{C})</td>
<td>(\text{CH}_3\text{CH}_3)</td>
<td>(\text{CH}_3\text{CH}_3)</td>
<td>(\text{CH}_3\text{CH}_3)</td>
</tr>
<tr>
<td></td>
<td>Methionine (Met)</td>
<td>Phenylalanine (Phe)</td>
<td>Tryptophan (Trp)</td>
<td>Proline (Pro)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td>(H_3N^+)C(=)O(-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{H}_3\text{C})</td>
<td>(\text{H}_2\text{C})</td>
<td>(\text{H}_3\text{C})</td>
<td>(\text{H}_3\text{C})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{CH}_2)</td>
<td>(\text{CH}_2)</td>
<td>(\text{CH}_2)</td>
<td>(\text{CH}_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{S})</td>
<td>(\text{CH}_3)</td>
<td>(\text{CH}_3)</td>
<td>(\text{CH}_3)</td>
<td></td>
</tr>
</tbody>
</table>

Nonpolar & hydrophobic
Classes of amino acids

What do these amino acids have in common?

<table>
<thead>
<tr>
<th>Polar</th>
<th>Acidic</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td> Serine (Ser)</td>
<td> Aspartic acid (Asp)</td>
<td> Lysine (Lys)</td>
</tr>
<tr>
<td> Threonine (Thr)</td>
<td> Glutamic acid (Glu)</td>
<td> Arginine (Arg)</td>
</tr>
<tr>
<td> Cysteine (Cys)</td>
<td> Tyrosine (Tyr)</td>
<td> Histidine (His)</td>
</tr>
<tr>
<td> Tyrosine (Tyr)</td>
<td> Asparagine (Asn)</td>
<td></td>
</tr>
<tr>
<td> Glutamine (Gln)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I like the polar ones the best!

polar & hydrophilic
Proteins domains anchor molecule

- **Within membrane**
 - **nonpolar** amino acids
 - hydrophobic
 - anchors protein into membrane
- **On outer surfaces of membrane in fluid**
 - **polar** amino acids
 - hydrophilic
 - extend into extracellular fluid & into cytosol
Examples

aquaporin = water channel in bacteria

Porin monomer \(\text{H}_2\text{O} \)

\(\beta \)-pleated sheets

Bacterial outer membrane

function through conformational change = protein changes shape

proton pump channel in photosynthetic bacteria

Examples

\(\text{H}_2\text{O} \)}
Many Functions of Membrane Proteins

Outside

Plasma membrane

Inside

Transporter

Enzyme activity

Cell surface receptor

Cell surface identity marker

Cell adhesion

Attachment to the cytoskeleton
Membrane Proteins

- Proteins determine membrane’s specific functions
 - cell membrane & organelle membranes each have unique collections of proteins

- Classes of membrane proteins:
 - **Peripheral proteins**
 - loosely bound to surface of membrane
 - ex: cell surface identity marker (antigens)
 - **Integral proteins**
 - penetrate lipid bilayer, usually across whole membrane
 - *transmembrane* protein
 - ex: transport proteins
 - channels, permeases (pumps)
Cell membrane must be more than lipids...

- In 1972, S.J. Singer & G. Nicolson proposed that membrane proteins are inserted into the phospholipid bilayer.

It's like a fluid...
It's like a mosaic...
It's the Fluid Mosaic Model!
Membrane is a collage of proteins & other molecules embedded in the fluid matrix of the lipid bilayer.

Membrane carbohydrates

- Play a key role in **cell-cell recognition**
 - ability of a cell to distinguish one cell from another
 - **antigens**
 - important in organ & tissue development
 - basis for rejection of foreign cells by **immune system**
Any Questions??
Movement across the Cell Membrane
Diffusion

- **2nd Law of Thermodynamics** governs biological systems
 - universe tends towards disorder (entropy)

Diffusion
- movement from **HIGH** → **LOW** concentration
Simple Diffusion

- Move from **HIGH** to **LOW** concentration
 - “passive transport”
 - no energy needed
Facilitated Diffusion

- Diffusion through protein channels
 - channels move specific molecules across cell membrane
 - no energy needed

“Facilitated” = with help
open channel = fast transport

“Hydrophilic region” of protein

“Hydrophobic region” of protein

“High”

“Low”

“The Bouncer”
Active Transport

- Cells may need to move molecules against concentration gradient
 - conformational shape change transports solute from one side of membrane to other
 - protein “pump”
 - “costs” energy = ATP
Active transport

- Many models & mechanisms

ATP

antiport

symport
Getting through cell membrane

- **Passive Transport**
 - **Simple diffusion**
 - diffusion of nonpolar, hydrophobic molecules
 - lipids
 - HIGH \rightarrow LOW concentration gradient
 - **Facilitated transport**
 - diffusion of polar, hydrophilic molecules
 - through a protein channel
 - HIGH \rightarrow LOW concentration gradient

- **Active transport**
 - diffusion *against* concentration gradient
 - LOW \rightarrow HIGH
 - uses a protein pump
 - requires ATP
Transport summary

- **Simple diffusion**
- **Facilitated diffusion**
- **Active transport**

Passive transport

- ATP
How about large molecules?

- Moving large molecules into & out of cell
 - through vesicles & vacuoles
 - **endocytosis**
 - **phagocytosis** = “cellular eating”
 - **pinocytosis** = “cellular drinking”
 - **exocytosis**
Endocytosis

- **Phagocytosis**:fuse with lysosome for digestion
- **Pinocytosis**:non-specific process
- **Receptor-mediated endocytosis**:triggered by molecular signal
The Special Case of Water

Movement of water across the cell membrane
Osmosis is just diffusion of water

- Water is very important to life, so we talk about water separately
- Diffusion of water from HIGH concentration of water to LOW concentration of water
 - across a semi-permeable membrane
Concentration of water

- Direction of osmosis is determined by comparing total solute concentrations
 - Hypertonic - more solute, less water
 - Hypotonic - less solute, more water
 - Isotonic - equal solute, equal water

Net movement of water
Managing water balance

- Cell survival depends on balancing water uptake & loss

Hypotonic solution
- Lysed

Isotonic solution
- Normal

Hypertonic solution
- Shriveled

freshwater
- Turgid (normal)

balanced
- Flaccid

saltwater
- Plasmolyzed
Managing water balance

- **Hypotonic**
 - a cell in *fresh water*
 - high concentration of water around cell
 - problem: cell gains water, swells & can burst
 - example: *Paramecium*
 - ex: water continually enters *Paramecium* cell
 - solution: contractile vacuole
 - pumps water out of cell
 - ATP
 - plant cells
 - turgid = full
 - cell wall protects from bursting

ATP

KABOOM!

No problem, here
Pumping water out

- Contractile vacuole in *Paramecium*
Managing water balance

- Hypertonic
 - a cell in **salt water**
 - low concentration of water around cell
 - **problem**: cell loses water & can die
 - **example**: shellfish
 - **solution**: take up water or pump out salt

- plant cells
 - **plasmolysis** = wilt
 - can recover
Managing water balance

- **Isotonic**
 - animal cell immersed in *mild salt* solution
 - no difference in concentration of water between cell & environment
 - **problem**: none
 - no net movement of water
 - flows across membrane equally, in both directions
 - cell in equilibrium
 - volume of cell is stable
 - **example**: blood cells in blood plasma
 - slightly salty IV solution in hospital
Aquaporins

- Water moves rapidly into & out of cells
 - evidence that there were water channels
 - protein channels allowing flow of water across cell membrane
Do you understand Osmosis…

Cell (compared to beaker) → \textbf{hypertonic or hypotonic}

Beaker (compared to cell) → \textbf{hypertonic or hypotonic}

Which way does the water flow? → \textbf{in} or out of cell
Any Questions??
Ghosts of Lectures Past
(storage)
Diffusion through phospholipid bilayer

- What molecules can get through directly?
 - fats & other lipids

- What molecules can **NOT** get through directly?
 - polar molecules
 - ions (charged)
 - large molecules
 - salts, ammonia
 - starches, proteins
Membrane fat composition varies

- Fat composition affects flexibility
 - membrane must be fluid & flexible
 - about as fluid as thick salad oil
 - % unsaturated fatty acids in phospholipids
 - keep membrane less viscous
 - cold-adapted organisms, like winter wheat
 - increase % in autumn
 - cholesterol in membrane

Diffusion across cell membrane

- Cell membrane is the boundary between inside & outside...
 - separates cell from its environment

Can it be an impenetrable boundary? **NO!**

IN
- food
- carbohydrates
- sugars, proteins
- amino acids
- lipids
- salts, O_2, H_2O

OUT
- waste
- ammonia
- salts
- CO_2
- H_2O
- products

Cell needs materials **in** & products or waste **out**